Sebelumnya, mari kita sepakati penggunaan istilah dalam materi ini dulu. Sistem persamaan yang terdiri atas sebuah persamaan linear dan sebuah persamaan kuadrat yang masing-masing bervariabel dua disebut sistem persamaan linear-kuadrat SPLKSPLK. Berdasarkan karakteristik dari bagian kuadratnya, SPLK dikelompokkan sebagai berikut.
SPLK dengan bagian kuadrat berbentuk eksplisit.
SPLK dengan bagian kuadrat berbentuk implisit.
SPLK Dengan Bagian Kuadrat Berbentuk Eksplisit
Bentuk umum SPLK dengan bagian kuadratnya berbentuk eksplisit dapat dituliskan sebagai berikut.
{y=ax+b(bagian linear)y=px2+qx+r(bagian kuadrat){y=ax+b(bagian linear)y=px2+qx+r(bagian kuadrat)
dengan a,b,p,q,ra,b,p,q,r bilangan real dan a,p≠0.a,p≠0.
Sistem ini dapat diselesaikan dengan cara mensubstitusikan persamaan linear ke persamaan kuadrat, kemudian disederhanakan dan diselesaikan dengan menggunakan metode pemfaktoran, melengkapkan kuadrat, atau rumus ABC.
Secara umum, penyelesaian dari SPLK tersebut dapat ditentukan dengan melalui langkah-langkah berikut.
Langkah 1:
Substitusikan bagian linear y=ax+by=ax+b ke bagian kuadrat y=px2+qx+ry=px2+qx+r diperoleh
ax+b=px2+qx+rpx2+qx−ax+r−b=0px2+(q−a)x+(r−b)=0ax+b=px2+qx+rpx2+qx−ax+r−b=0px2+(q−a)x+(r−b)=0
Persamaan terakhir merupakan persamaan kuadrat satu variabel, yaitu xx Selesaikan persamaan kuadrat tersebut untuk mencari nilai xx
Langkah 2:
Nilai-nilai xx yang didapat pada Langkah 1 tadi jikaadajikaada disubstitusikan ke persamaan y=ax+by=ax+b agarperhitungannyalebihmudahagarperhitungannyalebihmudah, untuk memperoleh nilai yy. Kita ingat bahwa nilai xx yang memenuhi persamaan kuadrat px2+(q−a)x+(r−b)=0px2+(q−a)x+(r−b)=0 disebut akar-akar dari persamaan kuadrat itu. Banyak nilai xx banyakakarbanyakakar dari persamaan kuadrat tersebut ditentukan oleh nilai diskriminan D=(q−a)2−4p(r−b)D=(q−a)2−4p(r−b). Dengan demikian, banyak anggota dalam himpunan penyelesaian SPLK
{y=ax+by=px2+qx+r{y=ax+by=px2+qx+r
ditentukan oleh nilai diskriminan DD dengan aturan berikut.
- Jika D>0, maka SPLK tersebut mempunyai dua anggota dalam himpunan penyelesaiannya.
- Jika D=0, maka SPLK tersebut mempunyai satu anggota dalam himpunan penyelesaiannya.
- Jika D<0, maka SPLK tersebut tidak mempunyai anggota dalam himpunan penyelesaiannya. Dengan kata lain, himpunan penyelesaiannya adalah himpunan kosong, dinotasikan ∅∅ atau .
- Jika D>0D>0, maka garis memotong parabola di dua titik yang berlainan.
- Jika $D=0, maka garis memotong parabola tepat di satu titik. Dengan kata lain, garis itu menyinggung parabola.
- Jika $D<0 maka garis dan parabola tidak berpotongan.
- x2+y2+8=0x2+y2+8=0
- x2+2y2−3x+y=0x2+2y2−3x+y=0
- x2−y2−3x+4y+9=0x2−y2−3x+4y+9=0
- 2x2+xy+y2+3y−4=02x2+xy+y2+3y−4=0
EmoticonEmoticon